The Safe Use of Biological Safety Cabinets

Laboratory Training Module
by Environmental Health and Radiation Safety (EHRS)
Biological Safety Cabinets (BSCs)

• What is a Biological Safety Cabinet (BSC)?
 • Primary containment for working safely with infectious materials
 • Containment for biological aerosol generating procedures

• Designed to provide protection to:
 • Personnel
 • Product
 • Environment
HEPA Filter

• BSC’s have High Efficiency Particulate Air (HEPA) filters in their exhaust and/or supply systems

• Minimum filter efficiency = 99.97% removal at 0.3µm
 • BUT, particles both larger and smaller are removed with even greater efficiency!!!

• Filter construction:
 • Folded cellulose/borosilicate
 • Metal/wood frame
 • Epoxy/polyurethane sealants
Types of BSCs

3 Classifications of Biological Safety Cabinets:
- Class I
- Class II – most commonly used at Penn
- Class III (glove box)

If you are not sure which kind you have:
- Should be written on the front panel of the cabinet
- Call EHRS
Class I BSC

- **Personnel Protection**: Yes
 (inward airflow through sash opening)

- **Product Protection**: No
 (draws unfiltered laboratory air directly over work surface)

- **Environmental protection**: Yes
 (HEPA filtration of exhaust air)

- Suitable for work with agents in Risk Groups 1, 2 or 3
 - When NO product protection is required
Class II BSC

- **Personnel Protection:** Yes (inward airflow through sash opening)

- **Product Protection:** Yes (downward HEPA-filtered laminar airflow over work surface)

- **Environmental protection:** Yes (HEPA filtration of exhaust air)

- Appropriate for use with biohazardous materials and cell cultures
Class II Recirculating BSCs
(Types A1 and A2)

• Recirculates 70% of HEPA filtered air to work surface
• Exhausts 30% of HEPA filtered air to lab

• Use for work with:
 • Biohazardous (or potentially infectious) materials
 • Cell culture

• DO NOT use for work with:
 • Volatile toxic chemicals
 ▪ Vapors may build up presenting fire hazard
 ▪ Vapors will be recirculated into room
 • Radionucleotides
Class II Hybrid BSCs (Type B1)

- Recirculates 30% of airflow to **FRONT** part of work surface
- Exhausts 70% airflow via building exhaust system from **BACK** part of work surface

- Use for work with
 - Biohazardous (potentially infectious) materials

- May work with the following in the **BACK** (exhausted) part of surface
 - Volatile toxic chemicals
 - Tracer amounts of radionucleotides
 - Contact EHRS before initiating work

![Diagram of Class II Hybrid BSCs](image-url)
Class II Total Exhaust BSCs
(Type B2)

- Hard ducted to building exhaust system
 - 100% of airflow (HEPA filtered) exhausted to outside

- Use for work with:
 - Biohazardous (or potentially infectious) materials
 - Handling cytotoxic or hazardous drugs
 - Volatile toxic chemicals (moderate amounts)
 - Radionucleotides
Class III BSC (Glove Box)

- **Personnel Protection:** Yes
 (work is performed through glove ports)

- **Product Protection:** Yes
 (gas-tight absolute containment enclosure)

- **Environmental protection:** Yes
 (exhaust and supply air is HEPA filtered)

- Commonly used at BSL 3 or 4*
 *There are no Level 4 facilities available on Penn’s campus
Clean Benches are NOT BSCs

Use of clean benches for biomedical procedures is not allowed at Penn.

- **Personnel Protection:** No
 (air inside cabinet blown directly out at user)

- **Product Protection:** Yes
 (HEPA-filtered airflow over work surface)

- **Environmental protection:** No
 (no filtration of exhaust air)

- MUST NOT be used with:
 - Biohazardous (or potentially infectious) materials (including cell culture)
 - Chemicals
 - Radionucleotides
Before BSC Use

• Ensure window sash is at proper operating height (approx. 8-10 in.)

• Turn on blower and fluorescent light at least 15 min. prior to use

• Wipe down surfaces with appropriate disinfectant
Before BSC Use

• Monitor the BSC’s alarms, pressure gauges or flow indicators for any major fluctuations
 • ≥10% in magnehelic fluctuation
 • other changes indicating possible problems

• Do not change
 • baffle
 • damper
 • speed control settings
 • exhaust low flow alarm settings (if equipped)
Before BSC Use

• Protect vacuum system from aerosolized microorganisms

• Use configuration below and place in secondary containment (in case of spills)
 In-line HEPA filter (C) protects the Vacuum system (D)

Available from Fisher Scientific
During BSC Use

- Keep front, side, and rear air grilles clear
 - Obstructions disturb airflow compromising product and personnel protection

- Load only the materials required for the procedure
 - Cabinet is not made for storage of equipment or supplies

- Avoid frequent motions in and out of cabinet
 - Disrupts airflow
During BSC Use

• Arrange work surface from “clean” to “dirty” from left to right (or front to back)

Example:

• Sterile cell cultures (left)
• Inoculate cultures (center)
• Contaminated pipettes discarded in shallow pan with disinfectant (right)
• Other contaminated materials placed in biohazard bag (right)
No Open Flames in BSC

- **DO NOT** use open flames inside the cabinet
 - Not needed in the near microbe-free environment of BSC
 - Creates turbulence disrupting air patterns
 - Heat may damage HEPA filters or cause fire

Alternatives to continuous open flame Bunsen Burners:

- **Touch-o-Matic burner**
- **Bacticinerator**
- **Glass Bead Sterilizer**
- **Fuego SCS Safety Enhanced Laboratory Gas Burners**
Risk of fire from using open flames in BSC

Fire in a Biosafety Cabinet
During BSC Use

• If a spill occurs in cabinet during use:
 • Keep BSC running to contain aerosols
 • Cover spill with disinfectant soaked towels
 • Allow 20 min. contact time
 • Dispose of clean-up or other contaminated material in biohazard waste

• If spill overflows into catch basin under cabinet surface:
 • Ensure drain valve is closed
 • Pour disinfectant onto surface and through grilles
 • Allow 20-30 min. contact time
 • Soak up surface with paper towels
 • Connect flexible tubing to drain valve
 • Drain basin into disinfectant filled drain pan
 • Dispose of exposed materials in biohazard waste
After BSC Use

• Leave BSC blower running for at least 15 min. after use

• Wipe down cabinet surfaces with appropriate disinfectant

• UV lights are not necessary in BSCs
 • Only effective if cleaned weekly to remove dust/dirt AND checked periodically with a meter
 • MUST turn off when room is occupied to protect eyes and skin
Maintenance/Certification

• BSCs must be tested and certified *annually* or if:
 • A new cabinet is being installed
 • A cabinet has been moved
 • A cabinet is in need of troubleshooting or repairs

• **ALL** maintenance and certification conducted by an approved university-wide vendor
 • Never attempt repairs yourself
 • **DO NOT** contract with another vendor
Maintenance/Certification

• EHRS maintains a detailed inventory of BSCs on campus

• Contact a biosafety officer if you:
 • Plan to purchase a new BSC
 • Plan to move a BSC
 • Need help selecting a location for your BSC
 • Are encountering difficulties with scheduling or work completion
REMEMBER:

Biosafety Cabinets will only protect YOU, your PRODUCTS, and the EVIRONMENT if used properly!

So:
DO NOT use if out of certification
DO NOT clutter grilles
DO NOT overcrowd cabinet
DO NOT put head inside cabinet
DO NOT disrupt airflow with quick motions

DO follow practices/procedures outlined in training
DO feel free to contact EHRS with any questions anytime.

We are here to help!

Phone: 215-898-4453
E-mail: ehrs@ehrs.upenn.edu.