III. Principles of Biosafety

A. Containment

The term "containment" is used in describing safe methods for managing infectious agents in the laboratory environment where they are being handled or maintained. The purpose of containment is to reduce or eliminate exposure of laboratory workers, other people and the outside environment to potentially hazardous agents. The three elements of containment include laboratory practice and technique, safety equipment, and facility design.

Primary containment, the protection of personnel and the immediate laboratory environment from exposure to infectious agents, is provided by good microbiological technique and the use of appropriate safety equipment. The use of vaccines may provide an increased level of personal protection.

Secondary containment, the protection of the environment external to the laboratory from exposure to infectious materials, is provided by a combination of facility design and operational practices. The risk assessment of the work to be done with a specific agent will determine the appropriate combination of work practices, safety equipment and facility design to provide adequate containment.

Laboratory Practice and Technique. The most important element of containment is strict adherence to standard microbiological practices and techniques. Persons working with infectious agents or infected materials must be aware of potential hazards, and must be trained and proficient in the practices and techniques required for handling such material safely. The PI or laboratory supervisor is responsible for providing or arranging for appropriate training of personnel.

Each laboratory should develop an operational manual which identifies specific hazards that will or may be encountered, and which specifies practices and procedures designed to minimize or eliminate risks. Personnel should be advised of special hazards and should be required to read and to follow the required practices and procedures. A scientist trained and knowledgeable in appropriate laboratory techniques, safety procedures and hazards associated with the handling of infectious agents must direct laboratory activities.

When standard laboratory practices are not sufficient to control the hazard associated with a particular agent or laboratory procedure, additional measures may be needed. The PI is responsible for selecting additional safety practices, which must be in keeping with the hazard associated with the agent or procedure.

Laboratory personnel safety practices and techniques must be supplemented by appropriate facility design and engineering features, safety equipment and management practices.
Safety Equipment (Primary Barriers). Safety equipment includes biological safety cabinets, enclosed containers (i.e., safety centrifuge cups) and other engineering controls designed to remove or minimize exposures to hazardous biological materials. The biological safety cabinet (BSC) is the principal device used to provide containment of infectious splashes or aerosols generated by many microbiological procedures. More information on BSC’s may be found at the EHRS website and CDC website.

Safety equipment also may include items for personal protection such as personal protective clothing, respirators, face shields, safety glasses or goggles. Personal protective equipment is often used in combination with other safety equipment when working with biohazardous materials. In some situations, personal protective clothing may form the primary barrier between personnel and the infectious materials.

Facility Design (Secondary Barriers). The design of a facility is important in providing a barrier to protect people working inside and outside the laboratory, and to protect people or animals in the community from infectious agents which may be accidentally released from the laboratory. Facilities must be commensurate with the laboratory's function and the recommended biosafety level for the agent being manipulated.

The recommended secondary barrier(s) will depend on the risk of transmission of specific agents. For example, the exposure risks for most laboratory work in Biosafety Level 1 and 2 facilities will be direct contact with the agents, or inadvertent contact exposures through contaminated work environments. Secondary barriers in these laboratories may include separation of the laboratory work area from public access, availability of a decontamination facility (e.g., autoclave) and hand washing facilities.

As the risk for aerosol transmission increases, higher levels of primary containment and multiple secondary barriers may become necessary to prevent infectious agents from escaping into the environment. Such design features could include specialized ventilation systems to assure directional airflow, air treatment systems to decontaminate or remove agents from exhaust air, controlled access zones, airlocks at laboratory entrances, or separate buildings or modules for isolation of the laboratory.

B. Biosafety Levels

CDC describes four biosafety levels (BSLs) which consist of combinations of laboratory practices and techniques, safety equipment, and laboratory facilities. Each combination is specifically appropriate for the operations performed, the documented or suspected routes of transmission of the infectious agents, and for the laboratory function or activity. The recommended biosafety level for an organism represents the conditions under which the agent can be ordinarily handled safely. When specific information is available to suggest that virulence, pathogenicity, antibiotic resistance patterns, vaccine and treatment availability, or other factors are significantly altered, more (or less) stringent practices may be specified.
Biosafety Level 1 is appropriate for work done with defined and characterized strains of viable microorganisms not known to cause disease in healthy adult humans. It represents a basic level of containment that relies on standard microbiological practices with no special primary or secondary barriers recommended, other than a sink for hand washing.

Biosafety Level 2 is applicable to work done with a broad spectrum of indigenous moderate-risk agents present in the community and associated with human disease of varying severity. Agents can be used safely on the open bench, provided the potential for producing splashes or aerosols is low. Primary hazards to personnel working with these agents relate to accidental percutaneous or mucous membrane exposures or ingestion of infectious materials. Procedures with high aerosol or splash potential must be conducted in primary containment equipment such as biosafety cabinets. Primary barriers such as splash shields, face protection, gowns and gloves should be used as appropriate. Secondary barriers such as hand washing and waste decontamination facilities must be available.

Biosafety Level 3 is applicable to work done with indigenous or exotic agents with a potential for respiratory transmission and which may cause serious and potentially lethal infection. Primary hazards to personnel working with these agents (i.e., *Mycobacterium tuberculosis*, *St. Louis encephalitis virus* and *Coxiella burnetii*) include auto-inoculation, ingestion and exposure to infectious aerosols. Greater emphasis is placed on primary and secondary barriers to protect personnel in adjoining areas, the community and the environment from exposure to infectious aerosols. For example, all laboratory manipulations should be performed in a biological safety cabinet or other enclosed equipment. Secondary barriers include controlled access to the laboratory and a specialized ventilation system that minimizes the release of infectious aerosols from the laboratory.

Biosafety Level 4 is applicable for work with dangerous and exotic agents that pose a high individual risk of life-threatening disease, which may be transmitted via the aerosol route and for which there is no available vaccine or therapy. Agents with close or identical antigenic relationship to Biosafety Level 4 agents should also be handled at this level. Primary hazards to workers include respiratory exposure to infectious aerosols, mucous membrane exposure to infectious droplets and auto-inoculation. All manipulations of potentially infected materials and isolates pose a high risk of exposure and infection to personnel, the community and the environment. Isolation of aerosolized infectious materials is accomplished primarily by working in a Class III biological safety cabinet or a full-body, air-supplied positive pressure personnel suit. The facility is generally a separate building or a completely isolated zone within a complex with specialized ventilation and waste management systems to prevent release of viable agents to the environment.

C. Vertebrate Animal Biosafety Levels

There are four animal biosafety levels (ABSLs), designated Animal Biosafety Level 1 through 4, for work with infectious agents in mammals. The levels are combinations of
practices, safety equipment and facilities for experiments on animals infected with agents that produce or may produce human infection. In general, the biosafety level recommended for working with an infectious agent in vivo and in vitro is comparable.

Animal Biosafety Level 1 is suitable for work involving well characterized agents that are not known to cause disease in healthy adult humans, and that are of minimal potential hazard to laboratory personnel and the environment.

Animal Biosafety Level 2 is suitable for work with those agents associated with human disease. It addresses hazards from ingestion as well as from percutaneous and mucous membrane exposure.

Animal Biosafety Level 3 is suitable for work with animals infected with indigenous or exotic agents that present the potential of aerosol transmission and of causing serious or potentially lethal disease.

Animal Biosafety Level 4 is suitable for addressing dangerous and exotic agents that pose high risk of like threatening disease, aerosol transmission, or related agents with unknown risk of transmission.

Animal biosafety levels have been adapted for work in agricultural animals by EHRS and ULAR. The use of any barn for research with infectious agents in farm animals must be approved by EHRS and ULAR prior to experimentation.

Complete descriptions of all Biosafety Levels and Animal Biosafety Levels are outlined in the 4th edition of *Biosafety in Microbiological and Biomedical Laboratories* published by the U. S. Department of Health and Human Services (CDC/NIH).